Volume 34 Issue 5
Jun.  2021
Turn off MathJax
Article Contents
HE Zhong-qing, WANG Ke-yuan. A Functional Language Analysis Approach to the Cohesive Features in Mathematical Discourse[J]. Journal of University of Science and Technology Beijing ( Social Sciences Edition), 2018, 34(5): 1-6.
Citation: HE Zhong-qing, WANG Ke-yuan. A Functional Language Analysis Approach to the Cohesive Features in Mathematical Discourse[J]. Journal of University of Science and Technology Beijing ( Social Sciences Edition), 2018, 34(5): 1-6.

A Functional Language Analysis Approach to the Cohesive Features in Mathematical Discourse

  • Received Date: 2018-06-19
    Available Online: 2021-06-01
  • Cohesion constitutes an important element in forming textuality, ensuring clarity, appropriateness and comprehensibility in text. The present paper explores the cohesive features in mathematical discourse from the perspective of functional language analysis (FLA), focusing on the distribution and realization of cohesive devices, and distance of cohesive ties. Findings reveal that in mathematical discourse the most widely used cohesive device is reference, followed by lexical cohesion and conjunction. Substitution and ellipsis are hardly ever used. In terms of realization, reference is dominated by the definite article the, the demonstrative pronouns this/these and the adverb here, while conjunction is mainly realized by the additive conjunction and, the causal conjunction therefore, and the temporal conjunction firstly/secondly. In distance of cohesive ties, mathematical discourse mainly relies on immediate ties to achieve cohesion. It is argued that the present study contributes to the exploration of the “organization” features in mathematical discourse, thus shedding new light on studies of disciplinary English.

     

  • loading
  • [1]
    彭宣维.学科英语研究——我国高层次英语教育的问题分析与基本对策述要[J]. 外语教学, 即出.
    [2]
    曾蕾,尚康康.学术英语教学与学科英语研究的互动模式探讨[J].西安外国语大学学报, 2018, (1):53-59.
    [3]
    Ranta, A. Type theory and the informal language of mathematics [A]. In Barendregt, H. & Nipkow, T. (eds.). Types for Proofs and Programs [C]. Berlin & Heidelberg: Springer, 1994: 352-375.
    [4]
    Cocking, R. R. & Mestre, J. P. Linguistic and Cultural Influences on Learning Mathematics [C]. Hillsdale, NJ: Lawrence Erlbaum Associates, 1988.
    [5]
    Mousley, J.& Marks, G. Discourses in Mathematics [M]. Geelong, Victoria: Deakin University Press, 1991.
    [6]
    de Bruijn, N. G. The mathematical vernacular, a language for mathematics with typed sets [A]. In Nederpelt, R. P., Geuvers, J. H. & Vrijer, R. C. (eds.). Selected Papers on Automath [C]. Amsterdam: North-Holland Publishing Company, 1994: 865-935.
    [7]
    管梅.试论数学语言的特点及教学[J].现代中小学教育, 2002, (2):31-33.
    [8]
    刘浩文,张维忠.构建学生良好数学言语思维空间的教学途径[J].数学教育学报, 2003, (3): 28-30.
    [9]
    许世红,罗华.数学教学中培养中学生阅读能力的实验与思考[J].数学教育学报, 2001, (1): 82-85.
    [10]
    Fang, Z. Functional language analysis: a linguistically-informed approach to content area reading instruction[J]. Foreign Languages in China, 2010, 37 (5): 49-53.
    [11]
    Fang, Z.& Schleppegrell, M. Reading in Secondary Content Areas: A Language-based Pedagogy [M]. Ann Arbor: The University of Michigan Press, 2008.
    [12]
    Fang, Z. & Schleppegrell, M. Disciplinary literacies across content areas: supporting secondary reading through functional language analysis [J]. Journal of Adolescent & Adult Literacy, 2010, 53(7): 587-597.
    [13]
    Ranta, A.Constructive Type Theory [M]. Berlin & Heidelberg: Springer, 1995.
    [14]
    Pimm, D.Speaking Mathematics: Communication in Mathematics Classrooms [M]. London: Routledge & Kegan Paul Books, 1987.
    [15]
    O’Halloran, K. L. Towards a systematic functional analysis of multisemiotic mathematic texts [J]. Semiotica, 1999, 124 (1-2): 1-30.
    [16]
    O’Halloran, K.L. Mathematical Discourse: Language, Symbolism, and Visual Images [M]. London: Continuum, 2005.
    [17]
    Paudal, A. & Lam, H. G. A comparison of Hungarian and English teachers’ conceptions of mathematics and its teaching [J]. Educational Studies in Mathematics, 2001, 43:31-64.
    [18]
    彭宣维.话语回应中的衔接性隐喻及其数学表征[J].现代外语, 2018, (4):439-452.
    [19]
    Halliday, M.A. K. & Hasan, R. Cohesion in English [M]. London: Longman, 1976.
    [20]
    Ganesalingam, K.The Language of Mathematics: A Linguistic and Philosophical Investigation [M]. Berlin & Heidelberg: Springer, 2013.
    [21]
    Abel, K. & Exley, B. Using Halliday’s functional grammar examine early years worded mathematics text [J]. Australian Journal of Language and Literacy, 2008, 30: 227-242.
    [22]
    邹清华. 学术论文中第一人称代词的使用研究[D]. 吉林大学:硕士学位论文, 2008.
    [23]
    Schleppegrell, M.The Language of Schooling: A Functional Linguistics Perspective [M]. Mahwah, NJ: Erlbaum, 2004.
    [24]
    孙迎晖,齐豪杰.系统功能语言学在教学领域的应用:美国近些年研究特色[J]. 北京科技大学学报 (社会科学版), 2015, (1): 1-7.
    [25]
    Christiansen, T.Cohesion: A Discourse Perspective [M]. Bern: Peter Lang, 2011.
    [26]
    McCarthy, M.& Carter, R. Language as Discourse [M]. London & New York: Longman, 1994.
    [27]
    邵光华,刘明海.数学语言及其教学研究[J]. 课程·教材·教法, 2005, (2): 36-41.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (317) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return