Volume 41 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
SUN Shan. Judicial Application and Theoretical Review of Big Data Proof[J]. Journal of University of Science and Technology Beijing ( Social Sciences Edition), 2025, 41(1): 69-78. doi: 10.19979/j.cnki.issn10082689.2024010112
Citation: SUN Shan. Judicial Application and Theoretical Review of Big Data Proof[J]. Journal of University of Science and Technology Beijing ( Social Sciences Edition), 2025, 41(1): 69-78. doi: 10.19979/j.cnki.issn10082689.2024010112

Judicial Application and Theoretical Review of Big Data Proof

doi: 10.19979/j.cnki.issn10082689.2024010112
  • Received Date: 2024-01-31
  • Publish Date: 2025-02-01
  • In criminal justice activities, big data has emerged as a way of proof that is different from the traditional proof. Through the observational analysis of the applicable cases in China's current judicial practice, it can be summarized that the proof role of big data in the field of criminal justice is mainly manifested in five aspects: proving the identity of the subject involved in the case, the relevance of the information carrier, the amount of the massive information involved in the case, the criminal behavior, and the characteristic information in the criminal composition. Compared with traditional judicial proof, the most distinctive features of big data proof are intelligence, modeling and special relevance. To understand its inner principle and operation mechanism, we can adopt a kind of elemental thinking of “massive information + data processing + conclusion”. Based on the judicial application and the inner mechanism of the theoretical review of big data proof, we should firstly establish the legal attribute specification of the evidence-based conclusion of big data proof that can be used as the basis of the case, secondly clarify its factual determination principle as the opinion of the machine, and finally try to establish the paradigm of the binary differentiation of the general and case-specific review process based on the stability of the algorithm application scenarios.

     

  • loading
  • [1]
    TONY H,STEWART T & KRISTIN T. 第四范式:数据密集型科学发现[M]. 潘教峰,张晓林,译. 北京:科学出版社,2012.
    [2]
    中国司法大数据研究院. 涉信息网络犯罪特点和趋势(2017.1-2021.12)[R/OL]. 司法大数据专题报告 (2022-08-01)[2024-02-01]. https://file.chinacourt.org/f.php?id=c9b92b185f359c81&class=enclosure.
    [3]
    最高法:今年以来全国法院共受理案件3051.7万件[EB/OL]. 人民网 (2021-11-23)[2024-02-01]. http://society.people.com.cn/n1/2021/1123/c1008-32289759.html.
    [4]
    王燃. 大数据侦查[M]. 北京:清华大学出版社,2017.
    [5]
    刘品新. 论大数据证据[J]. 环球法律评论,2019,41(1):21-34.
    [6]
    刘品新. 电子证据法[M]. 北京:中国人民大学出版社,2021.
    [7]
    王燃. 大数据时代海量数据的多元化证明机制研究[J]. 中国刑事法杂志,2022(3):87-105.
    [8]
    谢君泽. 论大数据证明[J]. 中国刑事法杂志,2020(2):125-137.
    [9]
    周蔚. 大数据在事实认定中作用机制分析[J]. 中国政法大学学报,2015(6):64-82,160.
    [10]
    高通. 逮捕社会危险性量化评估研究——以自动化决策与算法规制为视角[J]. 北方法学,2021,15(6):131-144.
    [11]
    严剑漪. 揭秘“206”:法院未来的人工智能图景——上海刑事案件智能辅助办案系统164天研发实录[J]. 人民法治,2018(2):38-43.
    [12]
    王燃. 大数据证明的机理及可靠性探究[J]. 法学家,2022(3):57-71,192-193.
    [13]
    孔德伦. 大数据证据在网络犯罪案件中的运用——以镶嵌论为视角[J]. 西南政法大学学报,2020,22(6):85-96.
    [14]
    李建利,李宇尘. 大数据在刑事侦查中的应用研究[M]. 长春:吉林大学出版社,2017.
    [15]
    栗峥. 人工智能与事实认定[J]. 法学研究,2020,42(1):117-133.
    [16]
    程雷. 大数据侦查的法律控制[J]. 中国社会科学,2018(11):156-180,206-207.
    [17]
    徐惠,李晓东. 大数据证据之证据属性证成研究[J]. 中国人民公安大学学报(社会科学版),2020,36(1):47-57.
    [18]
    孙珊. 我国技术侦查证据使用研究[C]// 熊秋红,主编. 诉讼法学研究:第二十五卷. 北京:中国检察出版社,2021:202-214.
    [19]
    程龙. 论大数据证据质证的形式化及其实质化路径[J]. 政治与法律,2022(5):96-114.
    [20]
    马国洋. 论刑事诉讼中人工智能证据的审查[J]. 中国刑事法杂志,2021(5):158-176.
    [21]
    谢永江,杨永兴,刘涛. 个性化推荐算法的法律风险规制[J]. 北京科技大学学报(社会科学版),2024,40(1):77-85.
    [22]
    倪春乐,陈博文. 大数据证据的刑事诉讼应用机理研究[J]. 中国人民公安大学学报(社会科学版),2022,38(2):37-49.
    [23]
    米尔建·R·达马斯卡. 漂移的证据法[M]. 李学军,刘晓丹,姚永吉,等译. 北京:中国政法大学出版社,2003.
    [24]
    杨继文,范彦英. 大数据证据的事实认定原理[J]. 浙江社会科学,2021(10):46-54,156-157.
    [25]
    李慧,田坤. 涉虚拟货币洗钱犯罪刑事治理的实践面向[J]. 人民检察,2021(16):23-27.
    [26]
    最高检通报依法办理六起民营企业职务侵占犯罪典型案例[EB/OL]. 央视网(2022-05-05)[2024-10-17]. https://news.cctv.com/2022/05/05/ARTIT0ot82WLml2BIMDFps2f220505.shtml.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (27) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return