Opportunities, Challenges and Responses to Postgraduate Cultivation in the GAI Era
-
摘要: 在教育数字化转型背景下,生成式人工智能(Generative Artificial Intelligence,以下简称GAI)深度融入研究生教育,带来结构性变革。其依托先进技术具备类人认知能力,为研究生培养提供机遇:基于学习分析理论实现学习行为精准监测与动态优化,结合个性化学习理论打造专属培养路径,推动教育从经验驱动转向数据驱动,破解传统教育标准化局限。同时,GAI也引发挑战,如过度依赖致学术思维退化、内容准确性偏差与伦理失范,还可能解构“导师—研究生—知识”三元交互结构,导致师生互动弱化、人机关系异化,阻碍自主知识体系建构。对此,需构建“技术—人文—制度”协同应对体系:强化教师主体意识,设计使用指南与审核机制,开发素养课程培育研究生 “技术素养—人文价值—创新能力”;推动教育治理向数据智能范式转型,在发挥GAI技术价值的同时,坚守教育本质与意识形态安全底线。Abstract: With the continuous iteration of artificial intelligence, generative artificial intelligence (GAI, hereinafter referred to as GAI), represented by ChatGPT, has been deeply integrated into the field of education, bringing structural changes to postgraduate cultivation. Compared with the fixed curriculum system and standardized path of traditional teaching, its functions such as real-time knowledge retrieval realized through natural language interaction are reshaping the paradigm of teacher-student interaction. University teachers should take “teaching students in accordance with their aptitudes and promoting personalized development” as the guidance, integrate it with teaching modules, and build an “AI-assisted precise training system”. While seizing opportunities, it is necessary to be vigilant against the risks such as academic thinking degradation, content accuracy deviation, and ethical anomie caused by over-reliance. Teachers should strengthen their subject awareness, and guide students to use technology reasonably and maintain critical thinking by designing usage guidelines, establishing review mechanisms, and developing literacy courses. In the reform of ideological and political courses in universities, artificial intelligence constructs a multi-dimensional learning situation portrait through big data analysis, providing a basis for differentiated teaching; the intelligent monitoring system tracks key indicators, supports dynamic adjustment of strategies, and promotes teaching from experience-driven to data-driven, both adhering to the essence of education and enhancing affinity and pertinence.
-
Key words:
- GAI /
- postgraduate cultivation /
- virtual teaching
-
[1] 中国共产党第二十次全国代表大会文件汇编[M]. 北京: 人民出版社, 2022 . [2] 潘建红, 刘歌. 思政课数字化育人转型的实践图景与优化[J]. 北京科技大学学报(社会科学版), 2024, 40(3): 47-52. [3] 周洪宇, 李宇阳. ChatGPT 对教育生态的冲击及应对策略[J]. 新疆师范大学学报(哲学社会科学版), 2023, 44(4): 102-112. [4] 佟林杰, 牟倩. 生成式人工智能嵌入研究生教育的价值定位、潜在风险与规范路径[J]. 黑龙江高教研究, 2025, 43(7): 11-17. [5] 周莎, 张尚. 生成式人工智能应用于学术研究的风险及其预防机制[J]. 黑龙江高教研究, 2024, 42(3): 1-7. doi: 10.3969/j.issn.1003-2614.2024.03.001 [6] 宋萑, 林敏. ChatGPT/GAI时代下教师的工作变革: 机遇、挑战与应对[J]. 华东师范大学学报(教育科学版), 2023, 41(7): 78-90. [7] 卢宇, 余京蕾, 陈鹏鹤, 等. GAI的教育应用与展望——以ChatGPT系统为例[J]. 中国远程教育, 2023, 43(4): 24-31, 51. [8] 王雯, 李永智. 国际生成式人工智能教育应用与省思[J]. 开放教育研究, 2024, 30(3): 37-44. [9] 齐彦磊, 周洪宇. 技术、制度与思想: 生成式人工智能在教育领域中应用的演进逻辑[J]. 电化教育研究, 2024, 45(8): 28-34. [10] 刘三女牙, 郝晓晗. 生成式人工智能助力教育创新的挑战与进路[J]. 清华大学教育研究, 2024, 45(3): 1-12. [11] 詹泽慧, 季瑜, 牛世婧, 等. ChatGPT嵌入教育生态的内在机理、表征形态及风险化解[J]. 现代远距离教育, 2023(4): 3-13. doi: 10.3969/j.issn.1001-8700.2023.04.001 [12] 张诗濠, 李赟, 李韬. ChatGPT类生成式人工智能的风险及其治理[J]. 贵州社会科学, 2023(11): 138-143. [13] 刘嘉豪, 曾海军, 金婉莹, 等. 人工智能赋能高等教育: 逻辑理路、典型场景与实践进路[J]. 西安交通大学学报(社会科学版), 2024(3): 11-20. [14] 余胜泉, 汤筱玙. 智能时代的人才培养模式改革与创新[J]. 开放教育研究, 2024, 30(3): 45-52. -
点击查看大图
计量
- 文章访问数: 125
- HTML全文浏览量: 68
- PDF下载量: 12
- 被引次数: 0
下载: