Knowledge Representation: Past Review and Present Prospect
-
摘要: 知识及其表征是各学科领域的热点议题。迄今,人们基于不同理论和视角提出了众多的知识表征方法。文章首先概述知识的定义和分类;重点梳理认知心理学、教育、知识管理、人工智能、语言学等学科领域主要的知识表征方法,包括如命题符号理论、知觉符号理论、Novak的概念地图模型、经典逻辑表示法、描述逻辑表示法、Sowa的概念图符模型、学科知识的语言表征法等;最后指出,未来的知识表征研究须强化学科知识表征、表征系统的多符号性及其功能。Abstract: Knowledge and knowledge representation is a hot issue in various disciplines. For this purpose, researchers have to date proposed numerous methods grounded in different theories and from alternative perspectives. The paper begins with a systematic overview of definitions and classifications of knowledge. Then it focuses on reviewing representative approaches, such as Propositional Symbol System, Perceptual Symbol System, Novak’s Concept Maps, classic logics, description logics, Sowa’s Conceptual Graph, method of language representation for disciplinary knowledge, among other in such areas of cognitive psychology, education, knowledge management, artificial intelligence and linguistics. The paper finally points out that the future research of knowledge representation should be strengthened in terms of disciplinary knowledge representation, multi-semiotic nature and functions of representing systems.
-
Key words:
- knowledge /
- representation /
- discipline /
- semiotics /
- function
-
[1] WU H K & PUNTAMBEKAR S. Pedagogical affordances of multiple external representations in scientific processes[J]. Journal of Science Education and Technology, 2012, 21(6):754-767. doi: 10.1007/s10956-011-9363-7 [2] 魏屹东. 论科学表征的认知多样性[J]. 南国学术,2016,6(3):497-505. [3] 李喜先. 知识系统论 [M]. 北京: 科学出版社, 2011. [4] 詹文杰. 如何理解柏拉图的“知识”和“信念”?[J]. 世界哲学,2014(1):24-34. [5] GETTIER E L. Is justified true belief knowledge?[J]. Analysis, 1963, 23(6):121-123. doi: 10.1093/analys/23.6.121 [6] DURAN J. Knowledge in Context: Naturalized Epistemology and Sociolinguistics [M]. Lanham: Rowman & Littlefield Publishers, 1994. [7] SOSA E. Epistemology [M]. Princeton: Princeton University Press, 2017. [8] CHISHOLM M R. Theory of Knowledge [M]. New Jersey: Prentice-Hall, 1989. [9] 陈嘉明. 当代知识论: 概念、背景与现状[J]. 哲学研究,2003(5):89-95. [10] 卡尔·波普尔. 客观知识: 一个进化论的研究 [M]. 舒炜光, 卓如飞, 周柏乔, 等译. 上海: 上海译文出版社, 2005. [11] POLANYI M. Personal Knowledge [M]. Chicago: University of Chicago Press, 1958. [12] 野中郁次郎, 竹内弘高. 创造知识的企业: 日美企业持续创新的动力 [M]. 李萌, 高飞, 译. 北京: 知识产权出版社, 2006. [13] 林东清. 知识管理理论与实务 [M]. 北京: 电子工业出版社, 2005. [14] 顾琦一. 隐性知识、显性知识及其接口之争[J]. 外语教学,2005,26(6):45-50. doi: 10.3969/j.issn.1000-5544.2005.06.010 [15] 蒂瓦纳. 知识管理十步走 [M]. 董小英, 译. 北京: 电子工业出版社, 2004. [16] 梁林梅, 孙俊华. 知识管理 [M]. 北京: 北京大学出版社, 2011. [17] STANLEY J. Know How [M]. Oxford: Oxford University Press, 2011. [18] CLANCEY W J. Situated Cognition: On Human Knowledge and Computer Representations [M]. Cambridge: Cambridge University Press, 1997. [19] STERNBERG R J, STERNBERG K & MIO J S. Cognitive Psychology [M]. Belmont: Wadsworth/Cengage Learning, 2012. [20] POLANYI M. The Tacit Knowledge [M]. London: Routledge & Kegan Paul, 1966. [21] 丁家永. 知识的本质新论−一种认知心理学的观点[J]. 南京师大学报(社会科学版),1998(2):67-70. [22] PYLYSHYN Z W. What the mind’s eye tells the mind’s brain: a critique of mental imagery[J]. Psychological Bulletin, 1973, 80(1):1-24. doi: 10.1037/h0034650 [23] BARSALOU L W. Language comprehension: archival memory or preparation for situated action?[J]. Discourse Processes, 1999, 28(1):61-80. doi: 10.1080/01638539909545069 [24] DAMASIO A R. Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition[J]. Cognition, 1989, 33(1-2):25-62. doi: 10.1016/0010-0277(89)90005-X [25] GLENBERG A M. What memory is for[J]. Behavioral and Brain Sciences, 1997, 20(1):1-19. doi: 10.1017/S0140525X97000010 [26] 王瑞明,莫雷,李利,等. 言语理解中的知觉符号表征与命题符号表征[J]. 心理学报,2005,37(2):143-150. [27] GAGNE E D. The Cognitive Psychology of School Learning [M]. Boston: Little Brown, 1985. [28] 苏玉娟. 大数据知识表征的确证问题[J]. 晋阳学刊,2017a(4):140-145. [29] 苏玉娟. 基于大数据知识表征的特质[J]. 哲学分析,2017b,8(2):116-126. [30] 苏玉娟,魏屹东. 大数据知识表征的机制及其意义[J]. 科学技术哲学研究,2017,34(2):63-68. [31] 王建安,叶德营. 知识分类与知识表征−评赖尔的知识分类和围绕它的争论[J]. 自然辩证法通讯,2010,32(4):13-18. [32] ADORNI G & KOCEVA F. Designing a knowledge representation tool for subject matter structuring [C] // CROITORU M, MARQUIS P, RUDOLPH S, et al. Graph Structures for Knowledge Representation and Reasoning. Switzerland: Springer, 2015: 1–14. [33] NOVAK J D & CANAS A J. The theory underlying concept maps and how to construct them[J]. Práxis Educativa, 2010, 5(1):9-29. [34] 魏屹东. 人工智能的适应性知识表征与推理[J]. 上海师范大学学报(哲学社会科学版),2019,48(1):65-75. [35] POST E. Introduction to a general theory of elementary propositions[J]. American Journal of Mathematics, 1921, 43(3):163-185. doi: 10.2307/2370324 [36] MCCARTHY J. Programs with common sense [C] // Proceedings of the Teddington Conference on the Mechanization of Thought Processes. London, 1959: 75–91. [37] GABBAY D M & OHLBACH H J. Quantifier elimination in second-order predicate logic [C] // NEBEL B, RICH C & SWARTOUT W. Principles of Knowledge Representation and Reasoning (KR92). Burlington: Morgan Kaufmann, 1992: 425–435. [38] MENZEL C. Knowledge representation, the World Wide Web, and the evolution of logic[J]. Synthese, 2011, 182(2):269-295. doi: 10.1007/s11229-009-9661-2 [39] BRACHMAN R J & LEVESQUE H J. Knowledge Representation and Reasoning [M]. San Francisco: Elsevier, 2004. [40] 张令振. 知识表达及其理论[J]. 应用心理学,1989,4(1):49-53. [41] BAADER F, CALVANESE D, NARDI D, et al. The Description Logic Handbook: Theory, Implementation and Applications [M]. Cambridge: Cambridge University Press, 2003. [42] VAN HARMELEN F, LIFSCHITZ V & PORTER B. Handbook of Knowledge Representation [M]. Amsterdam: Elsevier, 2008. [43] ELBEDWEHY M N, GHONEIM M E, HASSANIEN A E, et al. A computational knowledge representation model for cognitive computers [J]. Neural Computing and Applications, 2014, 25(7–8): 1517–1534. [44] AREVALILLO-HERRÁEZ M, ARNAU D & MARCO-GIMÉNEZ L. Domain-specific knowledge representation and inference engine for an intelligent tutoring system[J]. Knowledge-Based Systems, 2013, 49:97-105. doi: 10.1016/j.knosys.2013.04.017 [45] 李学宁, 李向明, 宋孟洪. 系统功能语言学在自然语言处理中的知识表示研究 [M]. 上海: 上海交通大学出版社, 2018. [46] 彭宣维. 系统功能语言学的学理及发展走向[J]. 中国外语,2017,14(1):10-14. [47] HALLIDAY M A K. The linguistic basis of a mechanical thesaurus [C] // WEBSTER J J. Computational and Quantitative Studies, Vol. 5 in the Collected Works of M. A. K. Halliday. London; New York: Continuum, 2005: 6–19. [48] HALLIDAY M A K. Linguistics and machine translation [C] // WEBSTER J J. Computational and Quantitative Studies, Vol. 5 in the Collected Works of M. A. K. Halliday. London; New York: Continuum, 2005: 20–36. [49] HALLIDAY M A K. Computational and Quantitative Studies, Vol. 5 in the Collected Works of M. A. K. Halliday [M]. London; New York: Continuum, 2005. [50] DAVEY A. The Formalisation of Discourse Production [D]. Edinburgh: University of Edinburgh, 1974. [51] DAVEYA. Discourse Production [M]. Edinburgh: Edinburgh University Press, 1978. [52] PATTERN T. Interpreting Systemic Grammar as a Computational Representation: A Problem Solving Approach to Text Generation [D]. Edinburgh: University of Edinburgh, 1986. [53] FAWCETT R P & TUCKER G H. Demonstration of GENESYS: a very large, semantically based systemic functional grammar [C] //KARLGREN H. Proceedings of the 13th Conference on Computational Linguistics (Volume 1). Helsinki, 1990: 47–49. [54] O’DONNELL M. Sentence Analysis and Generation: A Systemic Perspective [D]. Sydney: University of Sydney, 1994. [55] 吴 华. 汉语自然语言生成的理论、方法的研究及系统实现 [D]. 北京: 中国科学院自动化研究所, 2001. [56] REITER E & DALE R. Building Natural Language Generation Systems [M]. Beijing: Peking University, 2010. [57] EVERMANN J. Towards a cognitive foundation for knowledge representation[J]. Information Systems Journal, 2005, 15(2):147-178. doi: 10.1111/j.1365-2575.2005.00193.x [58] PIKE W & GAHEGAN M. Beyond ontologies: toward situated representations of scientific knowledge[J]. International Journal of Human-Computer Studies, 2007, 65(7):674-688. doi: 10.1016/j.ijhcs.2007.03.002 [59] VAN DIJK T A. Discourse and Knowledge: A Sociological Approach [M]. Cambridge: Cambridge University Press, 2014. [60] 杨信彰. 学科语篇研究的若干问题[J]. 外语教学,2019,40(2):8-12. [61] 朱永生. Bernstein的教育社会学理论对系统功能语言学的影响[J]. 外语教学,2011,32(4):6-12. [62] BERNSTEIN B. Pedagogy, Symbolic Control and Identity: Theory, Research, Critique (2nd ed. ) [M]. Maryland: Rowman & Littlefield, 2000. [63] MATON K. Knowledge and Knowers: Towards a Realist Sociology of Education [M]. London; New York: Routledge, 2014. [64] 赖良涛. 教育语言学——一个社会符号的模式 [M]. 北京: 外语教学与研究出版社, 2015. [65] HOOD S. Writing discipline: comparing inscriptions of knowledge and knowers in academic writing [C] // CHRISTIE F & MATON K. Disciplinarity: Functional Linguistics and Sociological Perspectives. London; New York: Continuum, 2011: 106–128. [66] WIGNELL P. Vertical and horizontal discourse and the social sciences [C] // CHRISTIE F & MARTIN J R. Language, Knowledge and Pedagogy: Functional Linguistic and Sociological Perspectives. London; New York: Continuum, 2007: 184–204. [67] MARTIN J R. Construing knowledge: a functional linguistic perspective [C] // CHRISTIE F & MARTIN J R. Language, Knowledge and Pedagogy: Functional Linguistic and Sociological Perspectives. London; New York: Continuum, 2007: 34–64 [68] CHRISTIE F & MACKEN-HORARIK M. Building verticality in subject English [C] // CHRISTIE F & MARTIN J R. Language, Knowledge and Pedagogy: Functional Linguistic and Sociological Perspectives. London; New York: Continuum, 2007: 156–183. [69] SRINIWASS S. Knowledge Construction in the Genre of Chemistry Textbooks: A Systemic Functional Perspective [M]. Saarbrücken: VDM Verlag Dr. Müller, 2010. [70] 赵清丽. 中小学物理教科书的知识建构 [M]. 厦门: 厦门大学出版社, 2013. [71] DORAN Y. The Discourse of Physics: Building Knowledge through Language, Mathematics and Image [M]. New York: Routledge, 2018. [72] HALLIDAY M A K & MATTHIESSEN C M I M. Construing Experience through Meaning: A Language-based Approach to Cognition [M]. London; New York: Continuum, 1999. [73] HALLIDAY M A K. The Language of Science, Vol. 5 in the Collected Works of M. A. K. Halliday [M]. London: Continuum, 2004. [74] MARTIN J R. Life as a noun: arresting the universe in science and humanities [C] // HALLIDAY M A K & MARTIN J R. Writing Science: Literacy and Discursive Power. London: Falmer, 1993: 242–293. [75] ROSE D. Science discourse and industrial hierarchy [C] // MARTIN J R & VEEL R. Reading Science: Critical and Functional Perspectives on Discourses of Science. London; New York: Routledge, 1998: 237–267. [76] WIGNELL P, MARTIN J R & EGGINS S. The discourse of geography: ordering and explaining the experiential world [C] // HALLIDAY M A K & MARTIN J R. Writing Science: Literacy and Discursive Power. London: Falmer, 1993: 151–183. [77] VEEL R. The greening of school science: ecogenesis in secondary classrooms [C] // MARTIN J R & VEEL R. Reading Science: Critical and Functional Perspectives on Discourses of Science. London; New York: Routledge, 1998: 115–152. [78] O’HALLORAN K L. Mathematical Discourse: Language, Symbolism and Visual Images [M]. London; New York: Continuum, 2005. [79] 杨信彰. 英语物理学语篇中的言据性动词[J]. 英语研究,2018(1):66-76. [80] 彭宣维. 学科英语研究−高水平英语教育问题与对策述要[J]. 外语教学,2019,40(2):1-7. [81] 冯志伟. 自然语言计算机形式分析的理论与方法 [M]. 合肥: 中国科学技术大学出版社, 2018.
点击查看大图
计量
- 文章访问数: 630
- HTML全文浏览量: 357
- PDF下载量: 67
- 被引次数: 0