A Functional Language Analysis Approach to the Cohesive Features in Mathematical Discourse
-
摘要: 衔接是形成语篇的重要成分,影响语篇的明晰性、恰当性和可理解性。文章在功能语言分析视角下探讨数学语篇中的衔接特征,重点关注各衔接手段的分布和实现形式,以及衔接距离等。研究发现,数学语篇中,指称和词汇衔接的使用频率最高,其次是连接,替代和省略很少出现;在实现形式上,指称中的定冠词the、指示代词this/these和副词here、连接中的递进连词and、因果连词therefore和时间连词firstly/secondly等都较多出现;在衔接距离上,数学语篇多依赖直接衔接纽带。研究有助于揭示数学语篇中的“组织”特征,推动学科英语研究的发展。Abstract: Cohesion constitutes an important element in forming textuality, ensuring clarity, appropriateness and comprehensibility in text. The present paper explores the cohesive features in mathematical discourse from the perspective of functional language analysis (FLA), focusing on the distribution and realization of cohesive devices, and distance of cohesive ties. Findings reveal that in mathematical discourse the most widely used cohesive device is reference, followed by lexical cohesion and conjunction. Substitution and ellipsis are hardly ever used. In terms of realization, reference is dominated by the definite article the, the demonstrative pronouns this/these and the adverb here, while conjunction is mainly realized by the additive conjunction and, the causal conjunction therefore, and the temporal conjunction firstly/secondly. In distance of cohesive ties, mathematical discourse mainly relies on immediate ties to achieve cohesion. It is argued that the present study contributes to the exploration of the “organization” features in mathematical discourse, thus shedding new light on studies of disciplinary English.
-
Key words:
- disciplinary English /
- mathematical discourse /
- cohesion /
- functional language analysis
-
[1] 彭宣维.学科英语研究——我国高层次英语教育的问题分析与基本对策述要[J]. 外语教学, 即出. [2] 曾蕾,尚康康.学术英语教学与学科英语研究的互动模式探讨[J].西安外国语大学学报, 2018, (1):53-59. [3] Ranta, A. Type theory and the informal language of mathematics [A]. In Barendregt, H. & Nipkow, T. (eds.). Types for Proofs and Programs [C]. Berlin & Heidelberg: Springer, 1994: 352-375. [4] Cocking, R. R. & Mestre, J. P. Linguistic and Cultural Influences on Learning Mathematics [C]. Hillsdale, NJ: Lawrence Erlbaum Associates, 1988. [5] Mousley, J.& Marks, G. Discourses in Mathematics [M]. Geelong, Victoria: Deakin University Press, 1991. [6] de Bruijn, N. G. The mathematical vernacular, a language for mathematics with typed sets [A]. In Nederpelt, R. P., Geuvers, J. H. & Vrijer, R. C. (eds.). Selected Papers on Automath [C]. Amsterdam: North-Holland Publishing Company, 1994: 865-935. [7] 管梅.试论数学语言的特点及教学[J].现代中小学教育, 2002, (2):31-33. [8] 刘浩文,张维忠.构建学生良好数学言语思维空间的教学途径[J].数学教育学报, 2003, (3): 28-30. [9] 许世红,罗华.数学教学中培养中学生阅读能力的实验与思考[J].数学教育学报, 2001, (1): 82-85. [10] Fang, Z. Functional language analysis: a linguistically-informed approach to content area reading instruction[J]. Foreign Languages in China, 2010, 37 (5): 49-53. [11] Fang, Z.& Schleppegrell, M. Reading in Secondary Content Areas: A Language-based Pedagogy [M]. Ann Arbor: The University of Michigan Press, 2008. [12] Fang, Z. & Schleppegrell, M. Disciplinary literacies across content areas: supporting secondary reading through functional language analysis [J]. Journal of Adolescent & Adult Literacy, 2010, 53(7): 587-597. [13] Ranta, A.Constructive Type Theory [M]. Berlin & Heidelberg: Springer, 1995. [14] Pimm, D.Speaking Mathematics: Communication in Mathematics Classrooms [M]. London: Routledge & Kegan Paul Books, 1987. [15] O’Halloran, K. L. Towards a systematic functional analysis of multisemiotic mathematic texts [J]. Semiotica, 1999, 124 (1-2): 1-30. [16] O’Halloran, K.L. Mathematical Discourse: Language, Symbolism, and Visual Images [M]. London: Continuum, 2005. [17] Paudal, A. & Lam, H. G. A comparison of Hungarian and English teachers’ conceptions of mathematics and its teaching [J]. Educational Studies in Mathematics, 2001, 43:31-64. [18] 彭宣维.话语回应中的衔接性隐喻及其数学表征[J].现代外语, 2018, (4):439-452. [19] Halliday, M.A. K. & Hasan, R. Cohesion in English [M]. London: Longman, 1976. [20] Ganesalingam, K.The Language of Mathematics: A Linguistic and Philosophical Investigation [M]. Berlin & Heidelberg: Springer, 2013. [21] Abel, K. & Exley, B. Using Halliday’s functional grammar examine early years worded mathematics text [J]. Australian Journal of Language and Literacy, 2008, 30: 227-242. [22] 邹清华. 学术论文中第一人称代词的使用研究[D]. 吉林大学:硕士学位论文, 2008. [23] Schleppegrell, M.The Language of Schooling: A Functional Linguistics Perspective [M]. Mahwah, NJ: Erlbaum, 2004. [24] 孙迎晖,齐豪杰.系统功能语言学在教学领域的应用:美国近些年研究特色[J]. 北京科技大学学报 (社会科学版), 2015, (1): 1-7. [25] Christiansen, T.Cohesion: A Discourse Perspective [M]. Bern: Peter Lang, 2011. [26] McCarthy, M.& Carter, R. Language as Discourse [M]. London & New York: Longman, 1994. [27] 邵光华,刘明海.数学语言及其教学研究[J]. 课程·教材·教法, 2005, (2): 36-41.
点击查看大图
计量
- 文章访问数: 336
- HTML全文浏览量: 38
- PDF下载量: 15
- 被引次数: 0